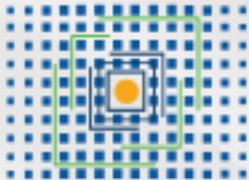

■ Small Size, Big Impact - The Future of L3 DC Fast EV Charger

As EVs gain popularity as a sustainable mode of transport, the demand for reliable charging infrastructure grows. Traditional EV chargers are criticized for their huge volume and larger footprint. Additionally, the integration of multiple components, including electronic card reader, terminal blocks, circuit breakers, cooling systems, and user interfaces, further increases their space requirements.

■ The Importance of Compact and Reliable EV Charging Infrastructure

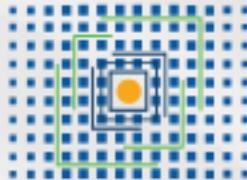
Given the rising demand for efficient charging solutions and limited space, advancement in EV Charging technology becomes essential. Compact and streamlined charging infrastructure is necessary due to the space consumption of traditional chargers. By reducing size, optimizing space and transformative technology, the chargers can effectively meet the needs of EV charging infrastructure.



Efficient Space Utilization with the DG Matrix L3 DC Fast EV Charger

Traditional L3 DC Fast EV chargers, with 100-kW power ratings, are large, exceeding 150,000 cubic inches. Their bulky size presents challenges in dense areas with limited space, consuming significant parking spaces. Compact charger designs that optimize space utilization are in high demand. The DG Matrix L3 Charger stands out with its **all-in-one single-unit design**, integrating power and dispenser stages. This significantly reduces the charger's volume. Compared to market alternatives, the DG Matrix solution occupies up to **1/10th the space**, making it highly efficient and convenient. This streamlined design not only addresses space constraints but also enhances convenience and accessibility.

Occupies upto **1/10th** the space



Compact Form Factor for Swift Installations

Another critical aspect to consider when evaluating EV chargers is their footprint. In many instances, the size of the charger determines the amount of ground space required for installation. Most dispensers have dimensions of 2 feet by 3 feet, resulting in a total footprint of 6 square feet. In contrast, DG Matrix offers a compact charger design with a footprint of only 1 square foot. This translates to a 6:1 ratio, indicating that the DG Matrix charger occupies significantly lesser footprint. Hence, this can optimize parking space utilization and accommodate more EV chargers in constrained environments.

Streamlined Conduit Connections Simplify EV Charger Installations

Beyond the volume and footprint comparisons, it is crucial to assess the conduit requirements for EV charger installations. Conduits serve as pathways for electrical wiring, facilitating the flow of power from the transformer to the charger. Comparing conduit ratios sheds light on the complexity and cost-effectiveness of different charging solutions.

Conventional EV charging infrastructure involve conduits running from the transformer to the rectifier stage and then from the rectifier to the dispensers. However, DG Matrix offers all-in-one single-unit design having integrated stages reducing the conduit pathways significantly and directly connecting the transformer to the dispensers. By eliminating the additional conduit runs, DG Matrix reduces material and installation costs while simplifying the charging infrastructure.

In conclusion, the future of L3 DC Fast EV chargers lies in their compact size and optimized space utilization. The DG Matrix L3 DC Fast EV Charger offers a transformative solution, occupying significantly less space while maintaining efficient charging capabilities. This advancement paves the way for a more sustainable and accessible electric transportation ecosystem.